PRESENTATIONS	Monday, September 23			POSTER PRESENTATIONS	Thursday, September 26		
	No. Name	First Name	Title	Room	No. Name		Title
hrödinger Lecture Hall	1 de la Hamette	Anne-Catherine	What an event is not: Unravelling the identity of events in quantum theory and gravity	Erwin-Schrödinger Lecture Hall	1 Carosini	Lorenzo	Experimental purification of photon indistinguishability via quantum interference
	2 Fankhauser	Johannes	Quantum Uncertainty, Quantum Nonlocality, and (Extended) Wigner's Friend Experiments		2 Fedida	Samuel	Knot invariants and indefinite causal order
	3 Glowacki	Jan	Towards Relational Quantum Field TheoryTowards Relational Quantum Field Theory		3 Frembs	Markus	A new perspective on Kochen Specker contextuality
	4 Kabel	Victoria	Identification is Pointless: Quantum Reference Frames, Localisation of Events, and the Quantum Hole Argument		4 Gupta	Tathagata	Optimal discrimination of quantum sequences
	5 Achenbach	Tim	Connecting the notions of incompatibility and entanglement		5 Kerschbaumer	Martin	Proposal for Nonlocal Experiment in the Triangle Network
	6 Antesberger	Michael	Process Tomography of a Fiber-based Quantum SWITCH		6 Kriváchy	Tamás	Topologically robust quantum network nonlocality
	7 Araújo	Jailson	Quantum Reality Erasure with Spacelike-Separated Operations		7 Van Der Lugt	Tein	Causally faithful channel decompositions, or: What can you do in a spacetime?
	8 Arya	Navdeep	Can we detect gravitational waves with atomic arrays?		8 Soltani	Sina	A noncontextual ontological model for bilocal classical theory
	9 Bibak	Fatemeh	Quantum Coherence in Networks		9 Mandrysch	Jan	Field measurements do not violate causality
	10 Candeloro	Alessandro	Intersubjectivity with finite resources		10 Galvão	Ernesto	Unitary-invariant witnesses of quantum imaginarity
	11 Centeno Diaz	Daniel	Causal inference for Bell nonlocality		11 Garmier	Sébastien	Transformations for Perfect and Imperfect Quantum Reference Frames
	12 Cieśliński	Paweł	Unmasking the Polygamous Nature of Quantum Nonlocality		12 Ghosh	Srijon	Operational Ergotropy: suboptimality of the geodesic drive
	13 Ciudad	Maria	Bell Nonlocality		13 Goswami	Suchetana	Hybrid quantum communication protocols using local indistinguishability
	14 Cladera Rosselló	Martí	Quantum Controlled Classical Operations in a Wigner's Friend Scenario		14 Gu	Xuemei	Experimental Full Network Nonlocality with Independent Sources and Strict Locality Constraints
	15 Coiteux-Roy	Xavier	The genuinely multipartite nonlocality of graph states is model-dependent		15 Rico	Albert	Entanglement detection with trace polynomials
	16 Das	Debarshi	Mass-Independent Scheme to Test the Quantumness of a Massive Object		16 Headley	Francis	Quantum Metrology for Levitodynamics
	17 Denker	Sophia	Entanglement Witnesses from the Operator Schmidt Decomposition		17 Henk	Kai-Hendrik	Time Series Analysis of machine learned Quantum Systems
	18 Dourdent	Hippolyte	Breaking Local Indistinguishability with Superposition of Classical Communications		18 Hu	Mengyao	Optimizing Bell Inequalities via Tensor Network Contractions in Tropical Algebra
nar Room	19 Ellers	Kai-Isaak	Towards a measurement of gravitational frame-dragging with a superfluid interferometer	IQOQI Seminar Room	19 Jain	Prabhav	Implications of Information Causality and its Generalisations
	20 Kerppo	Oskari	Simple information-processing tasks with unbounded quantum advantage		20 Kimura	Gen	Relaxed Bell Inequalities: Measuring the Necessity of Hidden Variables
	21 Krizek	Gerd	Against the "nightmare of a mechanically determined universe"	1	21 Knepper	Benjamin	Quantum Invisible Particle Sensor (QuIPS)
	22 Kunte	Ved	Entanglement Asymmetry in non-Abelian Anyonic Systems		22 Krehs	Robin	Is there high-dimensional bound entanglement?
	23 Leppäjärvi	Leevi	On the simulation of quantum multimeters	I	23 Luppi	Paolo	is there nigh-dimensional bound entanglement? Multi-time nonclassicality in quantum walks
			·	I			
	24 Pocreau	Pierre	A superlinear advantage in deterministic query complexity from causal indefiniteness	I	24 Mekonnen	Manuel	What is the most general (ideal) quantum coordinate transformation?
	25 Popp	Christopher	Entanglement Structure of Bell-diagonal states	I	25 Nöller	Jan	Quasi-deterministic self-testing of quantum computation
	26 Quehenberg	Renate	Towards Higher Dimensional Representations of Qudits II		26 Rivlin	Tom	Equilibration of objective observables in a dynamical model of quantum measurements
	27 Seabrook	Hannah	Noise-robust QKD across unitary and lossy channels	I	27 Schmid	Mariana	Efficient and Device-Independent Active Quantum State Certification
	28 Singh	Hardeep	Superposition Trap: An experimental concept to quantify the Quantum Collapse Models	I	28 Schroeder	Anna	Classical Simulation Costs of Interactive Quantum Circuits
	29 Solymos	Adrian	Extendibility of Brauer states		29 Tartaglione	Gianluigi	Geometric Measure of Nonlocality of 2 Qubits Systems
	30 Sutter	Tobias C.	Dissipative Quantum Neural Networks		30 Zampeli	Adamantia	The causality principle in a spacetime setting and its violation
	31 Aguilar	Gabriel	Synthesizing the Born rule with reinforcement learning		31 Zanfardino	Gennaro	Entanglement-based protocol for quantum state discrimination
	32 Liu	Mingxuan	Logical Inference of Quantum Measurement		32 Moradi	Morteza	CHSH Bell Test for Optical Hybrid Entanglement
			-				
	33 Galley	Thomas D.	Any consistent coupling between classical gravity and quantum matter is fundamentally irreversible		33 Di Biagio	Andrea	Nonclassical causal explanations of extended Wigner's friend scenarios are fine-tuned
	34 Colosi	Daniele	Evaneseent particles and time of arrival problem		34 Butler	Sarah	Time-Energy Uncertainty from Einstein's Box
	35 Choudhary	Raman	Exclusivity principle and Ramsey numbers		35 Coelho	Antonio	[only abstract]
	36 Abiuso	Paolo	Physicality of evolution and statistical contractivity are equivalent notions of maps		36 Cortes Barbado	Luis	Particle detectors in superposition in de Sitter spacetime
	37 Violaris	Maria	Quantum teleportation using a genuinely classical communication channel must fail		37 Kanjilal	Som	Towards Necessary and sufficient state condition for violation of a multi-settings Bell inequality
	38 Raj	Chithra	Monogamy of nonlocality from multipartite information causality		38 Baroni	Matilde	Quantum bounds for compiled XOR games and d-outcome CHSH
	39 Medina Sánchez	Nicolás	Information-theoretic reconstruction of quantum theory		39 Renner	Martin	Compatibility of Generalized Noisy Qubit Measurements
	40 Jones	Caroline L.	Thinking twice inside the box: is Wigner's Friend really quantum?		40 Adil	Arsalan	A Search for Classical Subsystems in Quantum Worlds
	41 Murk	Sebastian	Probability vector representation of the Schrödinger equation and Leggett-Garg-type experiments		41 Orthey	Alexandre	Universal scheme to self-test extremal quantum measurements (and any mixed state)
	42 Schiansky	Peter	Experimental superposition of a quantum evolution with its time reverse		42 Cobucci	Gabriele	Characterising and detecting genuinely high-dimensional genuine multipartite entanglement
	42 Schlansky 43 Ghosh						0 00 7 0 1 0
		Subhendu Bikash	Quantum Nonlocality: Multi-copy Resource Inter-convertibility		43 Gangwar	Rajeev	Information Revival without Backflow: Non-causal Explanations of non-Markovianity
	44 Rico	Albert	Enlangiement detection with trace polynomials		44 Simonov	Kyrylo	Dimension-independent weak value estimation via controlled SWAP operations
	45 Roy Chowdhury	Snehasish	Advantage of Hardy's nonlocal correlation in reverse zero-error channel coding		45 Catani	Lorenzo	Resource-Theoretic Hierarchy of Contextuality for General Probabilistic Theories
	46 Eftaxias	Giorgos	Advantages of multicopy nonlocality distillation and its application to minimizing communication complexity		46 Bae	Kwangil	Designing Elegant Bell Inequalities in High Dimension
	47 Cao	Huan	Genuine multipartite entanglement detection with imperfect measurements		47 Silvestri	Raffaele	Experimental observation of Earth's rotation with quantum entanglement
	48 Sasmal	Souradeep	Unbounded Sharing of Nonlocality Using Projective Measurements		48 Ipek	Selman	Local hidden variable model for vertices of the dual 2-qubit stabilizer polytope
	49 Cabello	Adan	Perfect Quantum Strategies				
				1			
				1			
				I			
				I			
				1			